
SEPAY Wireless Electronic Cash Register (WECR)

Specifications

July 16, 2021

Version: 2.0

Status: DRAFT

Author Erik van Loenen

 SEPAY B.V.

Version history
0.1 October 4, 2019

First draft

0.2 October 14, 2019

- Added tables with error codes, status codes and request status values

- Field name transactionstatus changed to transactionerror in GetTransactionStatus response

0.3 January 21, 2020

1.0 Finalizing specs:

- Status 13 added

- In case of pending transaction, return transactionref of pending transaction (allowing

GetTransactionStatus/CancelTransaction)

- Added indication which status is applicable per type of call

2.0 July 16, 2021

- Fix numbering version history above

- Return IP and port allowing start transaction trigger in case terminal is in same local network subnet as cash

register

- Some documentation fixes

- Allow push URL for finished transaction notifications

- Added field with receipt information, allowing the cash register to embed the payment slip into a printed ticket

1 Introduction
This document describes the implementation of the cash register interface of Sepay payment terminals (Nexgo).

The implementation consists of a SOAP service to which cash register applications can connect and through which

transactions can be sent to a terminal and the status of a transaction can be checked. Currently, this is only a ‘poll’

mechanism, a push mechanism after finishing a transaction can be implemented later.

Security is taken care of by:

- Requiring an API login

- Include signature in each request/response

- SSL data transport

The authentication of requests consists of 3 levels:

1. Certificate

2. Login

3. Sepay terminal ID (SID)

1.1 Certificates

For authentication of the requests, SEPAY uses a private/public certificate pair. These certificates are used for

verification/generation of a signature. Each message that is sent from the WECR system has a signature that is generated

using the SEPAY private key based on concatenation all fields in the call (except for the signature field itself) and

separating them with a semicolon (;). An example of this ‘string to sign’ will be given for each of the messages sent by

the SEPAY WECR system when they are described further down in this document. This signature can be verified on

receipt, by reproducing this concatenated string and use the SEPAY public certificate (provided in Appendix A) to verify

the signature string passed in the message.

For message sent from the cash register to the SEPAY system, the inverse needs to happen. For this, the implementor of

the WECR interface needs to generate a public/private key pair (SHA256/RS2048). The private key should be used to

generate the signature for each message sent to the SEPAY WECR system. Upon setup of the provider, a public

certificate of this pair should be provided to SEPAY, along with the ‘recognizable name’, so that SEPAY can load this into

their system and by that enable it for use by clients/merchants.

It is recommended to give the generated certificate a long lifetime of 30 years for example, to avoid having to change

keys often (or at all).

The most common setup is that each supplier of an implementation of WECR to end clients has one certificate that can

be used for all clients. Of course, it is possible to have multiple certificates if a supplier wants to separate certain groups.

Another reason for using multiple certificates is because Sepay provides a mechanism for clients on the ‘My SEPAY page,

which allows a client to select the WECR provider and then provide a login (see further) and select the terminals for

which to activate the WECR interface. Each party that implements WECR needs to send a certificate to SEPAY,

accompanied with a name that a client would recognize when they want to use a SEPAY terminal in combination with

WECR.

1.2 Login

End clients/merchants can, after selecting the WECR provider, define a login for the connection. This login, usually but

not necessarily the email address of the client on their My SEPAY page, is then associated with the certificate on the

SEPAY system. This login also needs to be known to the cash register, since this is a field in each message that is sent.

Usually, each client uses one login for all their terminals, but if the client so desires, they can group terminals into

multiple logins if they have more shop locations for example.

1.3 SEPAY terminal ID (SID)

The final level of authentication is the SEPAY terminal ID, which identifies one specific terminal of a merchant. This is also

needed in the cash register, because this ultimately determines for which terminal a transaction is intended to be done

So, for each message that is sent to the SEPAY WECR system, these 3 things must match, meaning the client has setup

the relation between the certificate (WECDR supplier), associated login and terminals. Failure of any of these three

levels, will result in a ‘signature failed’ error upon receipt of a message.

1.4 Certification

SEPAY does not have a formal certification process. When suppliers are interested in implementing the WECR interface,

depending on the potential of the supplier, the supplier can get a temporary terminal from SEPAY, with which the

implementation can be developed. After receiving the public certificate of a new supplier, SEPAY will load this into their

system, but this will not be usable for other clients, until the supplier has done successful tests. When the supplier has

successfully implemented their end of the implementation, SEPAY will investigate the transactions and if all is well, will

make the certificate/provider public and selectable by clients/merchants.

Possibly, SEPAY will setup a more formal procedure with test scenario’s, but at this time we assess this on a one by one

basis before making an implementation publicly available.

1.5 High level functionality overview

The basic functionality currently consists of the following API calls:

1. StartTransaction, which starts a transaction with the given amount

2. GetTransactionStatus, which allows inquiry of an earlier transaction

3. CancelTransaction, which cancels the last transaction started

1.6 Versioning

The ‘version’ field in the specifications is used to distinguish what is implemented and allows the system to determine if

certain features are implemented or not. The previous/current implementations are all based on version 1. Any value

smaller than 2, including empty, will be interpreted as version 1.

Starting this version (2 or 2.0), there are parts that are new. Where the data if only applicable for a new/certain version,

this is indicated in the specs of the messages.

2 Definitions

2.1 Data types

Data type Description Example

Int Integer 12

String String Any text

Boolean True or False True

Date ISO 8601 date string YYYY-MM-DD 2019-10-04

DateTime ISO 8601 datetime string YYYY-MM-DD-HH:mm:SS 2019-10-04 11:02

Money Money values, formatted as #0.00 1.23 0.10

Url This represents a url string https://a.b.nl/SepayCB/?id=1

A[x..y] Alphanumeric string with length of x to y Alphanumeric string

N(x..y) Numeric string with length of x to y 0012

BASE64 String used to pass binary data. The binary should be converted to base64
standard

C4eO17ACQuTX

2.2 Transactionerror codes

These are error codes providing details about failed transactions.

Code Description

0 Transaction succeeded

100 Do not honour

101 Expired card

104 Restricted card

105 Check security settings of acquirer

106 Allowable PIN tries exceeded

107 Refer to Card Issuer

109 Invalid Merchant

110 Invalid Amount

111 Invalid Card Number

116 Not sufficient funds

117 Incorrect PIN

119 Transaction not permitted to the customer

120 Transaction not permitted to the POS device

121 Exceeds withdrawal amount limit

123 Exceeds withdrawal frequency limit

128 PIN key synch error

141 Refund declined

181 Card blocked

185 Product(s) not allowed

191 Unknown transponder

200 Pick-up card Declined

2004 Check ACQ

202 Suspected fraud

2033 Check ACQ

204 Restricted card Declined – Capture

2061 Check ACQ

2075 Check ACQ

208 Lost Card Declined – Capture

209 Stolen Card Declined – Capture

902 Invalid transaction Failed

904 Format error

907 Card issuer or switch inoperative

908 Destination not found Declined

909 System Malfunction Declined

911 Card issuer timed out Declined

912 Card issuer unavailable Declined

913 Technical failure

917 MAC key synch error Declined

2.3 Transactionresult codes

These are high level result codes, the error code in the previous table can provide more details about the reason the

transaction failed.

Code Description

0 Transaction succeeded

1803 Time-Out

1804 Transaction declined

1811 Technical failure

1822 Connection failure

1823 Invalid answer

2621 Canceled on PIN entry

2622 Time-out on PIN entry

2623 Declined by card

2625 Corrupted response

2627 Declined by host

2629 Cancellation

3313 MAC verification failure

4021 Declined by card/terminal

4352 Declined by card/terminal

2.4 Status codes

These are the status codes of the API request. The columns to the right indicate if the code is applicable for the call:

1. StartTransaction

2. GetTransac tionStatus

3. CancelTransaction

Code Description 1 2 3 4

0 OK V V V V

1 Some of the required fields are missing V V V V

2 Signature is invalid V V V V

4 Invalid parameters (invalid amount or, more likely invalid transactionref V V V

6 Duplicate request V

7 Terminal not active or not enabled and/or authorized for transactions through WECR V V V V

11 Pending request for this terminal. A new transactions can only be submitted after finishing or
cancelling the previous transaction.
When returned, the transactionref in the response is the reference of the pending transaction

V

13 Transaction failed V

14 This transaction was canceled. The message in the response reports the reason it was canceled:
- Canceled on terminal (STOP pressed)
- Timeout on terminal
- Canceled by WECR
- Transaction expired (transactions are valid for 1 hour after StartTransaction)

 V

15 Returned when the transaction is not finished and has not been canceled yet V

17 Transaction already in progress, cannot be canceled anymore V V

99 Undefined error V V V V

2.5 Version dependencies

A version column in the specs below is used to indicate from which version the field will be included and used. This also

implies that if the version number in the version field is lower, this field is not supported and not included in the string to

be used for the signature. If no version is indicated, the field will be applicable in all versions.

2.6 Signature

The signature value is created by concatenating all fields in the request/response, except the signature field itself, and

separating them with a semicolon (;). Fields that have a version indication in the ‘Version’ column are only included in

the signature if the version in the request/response is greater than or equal to the version mentioned. Fields without

version indication in this column are always included.

3 API calls

3.1 StartTransaction request

A new field was added to report the ‘brand’ used, which in currently/typically would contain one of the following values:

- Maestro

- VPay

- Mastercard

- VISA

- Amex

One more field that is new is a field containing the information for a receipt. This is in a special format that has escape

characters defining how it should be printed. See Appendix B for detail.

This call is used to start a transaction for a given amount. The request has parameters as described in the table below.

Fieldname Version Type Mandatory Description

key_index Int Yes Identifier of private key used for signature. If not applicable, use 0

version String Yes Version of the protocol used (in case of future changes requiring
version dependent handling).
See 2.5 for version dependencies

login String Yes Identifies the client and thereby identifies the terminals that belong
to this client for which transactions can be sent. The ‘MySepay’ user
account should be used for this, which must have the appropriate
rights for the WECR interface. Each account is assigned a private
key for encrypting the signature when setting up WECR connectivity
with Sepay.

sid N[7..7] Yes This is the Sepay ID that identifies the terminal to send the
transaction to

transactionref AN[1..255] Yes Unique identifier for this transaction

merchantref A[1..12] No Optional reference that will be associated with the transaction and
which will be available on the My Sepay transaction overview and
exports of transactions

amount Money Yes Amount of the transaction

callback_url 2 Url No If provided, the SEPAY system will call this URL to notify the
transactions has finished. The data that is posted, will be the same
as the response from a GetTransaction. This mechanism can be
used instead of polling and when possible is preferred to polling

signature BASE64 Yes SHA-256 hash for all properties in the command, separated by a
semicolon (excluding this signature property), signed with the
private key or pre-agreed customer key.

3.2 StartTransaction response

The response to the StartTransaction request is described in the table below.

Fieldname Version Type Mandatory Description

key_index Int Yes Copied from the request

version String Yes Copied from the request

login String Yes Copied from the request

sid N[7..7] Yes Copied from the request

transactionref AN[1..255] Yes Copied from the request or transactionref of pending transaction
in case the status = 11 (pending transaction)

merchantref A[1..12] No Copied from the request

amount Money Yes Copied from the request

status N[2..2] Yes Status of the request (See Status codes)

message String No Textual details about the status if available

terminalip 2 IP Address Conditional The local IP address of the terminal that can be used for triggering
the transaction to be picked up by the terminal.
This can only work if the terminal is in the same subnet on the
local LAN as the cash register

Terminalport 2 [N1..5] Conditional The port number on which to trigger the terminal (usually 1234)

signature BASE64 Yes SHA-256 hash for all properties in the command (excluding this
signature property), signed with the private key or pre-agreed
customer key

3.3 GetTransactionStatus request

This call is used to request the status of a previously submitted transaction. The request has parameters as described in

the table below.

Fieldname Version Type Mandatory Description

key_index Int Yes Identifier of private key used for signature. If not applicable, use 0

version String Yes Version of the protocol used (in case of future changes requiring
version dependent handling)

login String Yes Identifies the client and thereby identifies the terminals that
belong to this client for which transactions can be sent. The
‘MySepay’ user account should be used for this, which must have
the appropriate rights for the WECR interface. Each account is
assigned a private key for encrypting the signature when setting
up WECR connectivity with Sepay.

sid N[7..7] Yes This is the Sepay ID that identifies the terminal to send the
transaction to

transactionref AN[1..255] Yes Unique identifier for the transaction the status is requested for

timeout 2 Int Yes Number of seconds the request may wait for the transaction to
finish on the terminal before returning the result. This allows the
minimization of the number of polls. Values from 5 to 30 seconds
are recommended, depending on the level of blocking on the
client side.

signature BASE64 Yes SHA-256 hash for all properties in the command (excluding this
signature property), signed with the private key or pre-agreed
customer key

3.3.1 response
The response to the GetTransactionStatus request is described in the table below.

Fieldname Version Type Mandatory Description

key_index Int Yes Copied from the request

version String Yes Copied from the request

login String Yes Copied from the request

sid N[7..7] Yes Copied from the request

transactionref AN[1..255] Yes Copied from the request

merchantref A[1..12] No Merchant reference from the original transaction

amount Money Yes The amount of the transaction

transactiontime Datetime Cond If the transaction has taken place, this field contains the date
and time it took place

transactionerror Int Cond If the transaction has taken place, this field contains the status
of the transaction (See Transactionerror codes)

transactionresult Int Cond If the transaction has taken place, this field contains the result
of the transaction (See Transactionresult codes)

status Int Yes Status of the request (See Status codes)

message String No Textual details about the status if available

brand 2 String No Provides the brand used to pay, like Maestro, VPAY,
Mastercard, Payconiq

ticket 2 String No When the transaction was successful, this contains a string
representing the ticket for the transaction. This ticket is
presented in a special ‘print format’. See

signature BASE64 Yes SHA-256 hash for all properties in the command (excluding this
signature property), signed with the private key or pre-agreed
customer key

3.4 CancelTransaction request

This call is used to cancel a previously submitted transaction. This is only possible as long as the transaction has not been

picked up by the terminal, once processing has started on the terminal there is no way to ‘cancel’ it remotely. Only a

cancel on the physical terminal would be possible then, resulting in a failed transaction with the appropriate status

indicating the reason. The request has parameters as described in the table below.

Fieldname Version Type Mandatory Description

key_index Int Yes Identifier of private key used for signature. If not applicable, use 0

version String Yes Version of the protocol used (in case of future changes requiring
version dependent handling)

login String Yes Identifies the client and thereby identifies the terminals that
belong to this client for which transactions can be sent. The
‘MySepay’ user account should be used for this, which must have
the appropriate rights for the WECR interface. Each account is
assigned a private key for encrypting the signature when setting
up WECR connectivity with Sepay.

sid N[7..7] Yes This is the Sepay ID that identifies the terminal to send the
transaction to

transactionref AN[1..255] Yes Unique identifier for the transaction that should be canceled

force 2 Boolean No If this is set to true, the transaction status is canceled, even though
it can still be in progress on the terminal. This can be useful in case
of communication issues cause the transaction to ‘hang’. Set this
to True only when absolutely sure the transaction is not active on
the terminal anymore and the terminal is in idle state. The default
is False.

signature BASE64 Yes SHA-256 hash for all properties in the command (excluding this
signature property), signed with the private key or pre-agreed
customer key

3.5 CancelTransaction response

The response to the CancelTransaction request is described in the table below.

Fieldname Type Mandatory Description

key_index Int Yes Copied from the request

version String Yes Copied from the request

login String Yes Copied from the request

sid N[7..7] Yes Copied from the request

transactionref AN[1..255] Yes Copied from the request

status N[2..2] Yes Status of the request (See Status codes)

message String No Textual details about the status if available

signature BASE64 Yes SHA-256 hash for all properties in the command (excluding this signature
property), signed with the private key or pre-agreed customer key

Appendix A
This is the public certificate that should be used to verify the signature in each message sent from the SEPAY WECR

system.

-----BEGIN CERTIFICATE-----

MIIDdDCCAlygAwIBAgIBATANBgkqhkiG9w0BAQsFADB0MQswCQYDVQQGEwJOTDEL

MAkGA1UECBMCWkgxDjAMBgNVBAoTBVNFUEFZMQswCQYDVQQLEwJJVDEfMB0GA1UE

AxMWd2Vjci5zZXJ2aWNlcy5zZXBheS5ubDEaMBgGCSqGSIb3DQEJARYLaXRAc2Vw

YXkubmwwIBcNMjAwMTA4MDgyMjAwWhgPMjA1MDAxMDgwODIyMDBaMHQxCzAJBgNV

BAYTAk5MMQswCQYDVQQIEwJaSDEOMAwGA1UEChMFU0VQQVkxCzAJBgNVBAsTAklU

MR8wHQYDVQQDExZ3ZWNyLnNlcnZpY2VzLnNlcGF5Lm5sMRowGAYJKoZIhvcNAQkB

FgtpdEBzZXBheS5ubDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAOaK

wct1tB4nfTYfIppFAYUmb+kfvNzvmmd2Woui+YajYlHVWhLeTXl2H/DEUuY1/4VT

ku1UTsOi0uzjTJJYryqdKqkPCtvThsOUQ0JNjbbXZM5kEdcddeJMvULnSS/4dWVF

/lsv0vn2uxNysuprq7VEXmCSENOWMtg5r8D20PeAYEh/U+VavZ5FaNjIEqlKyjYt

kGsI2ABgUSJnrlZhDRq5Cb9AVgjRzu42JvTkaky9sjHP1569IqOiThlu6xEfACzg

ZaYnsIRh6ajXghzpBzbiXqVGhjvXUQbaZ+FV4JwQVsxfTokYl1E8MWVfAYWbO0FF

OYCUQR1AilacXTOl6JcCAwEAAaMPMA0wCwYDVR0PBAQDAgeAMA0GCSqGSIb3DQEB

CwUAA4IBAQAVXH65ARMMkBLrHQ1UjuWkuAXSI2pulqEe/L9U00f01ExlbAonxQg2

NJCJSd98jQZsD9mYBBQc5XfcC2y/nW81zDxyPkpd7vzN3JK02WP+MVgZI2wwH7h+

Nn454/JM8hI7Eye3aQWHMqWVD0bRJFz0vy8ELahxYfWzVg3DbdxAkhx++XasC/e5

sSmwDVag1KHt5qN4dH0MKLf8DnzldvIJuUREQpxmuIHyYlB/+4+CMraE5KZQqnEe

Jm+9FrcK8HMl7Bt7U3rAk68IhE4+mdlsI9+wHBEHksqsPqcjb0tTnIzBujPCcYCJ

CiomXPrKbr6nkxHM1EMuP47kCBf/LsQP

-----END CERTIFICATE-----

Appendix B
The string representing the payment ticket uses the following escape sequences that define the way it should be

represented on paper:

@RS Reset printing definitions to default (small font and positions printing to the first column at left margin)
@LF Line feed causes that next character is printed in the new line in the first column at the left margin
@SS Selects small font size
@SM Selects medium font size
@SL Selects large font size
@HT Positions printing of next character to the next tabulator, where tabulators are defined in every 8th column

starting from the left margin
@AR Align printing to right
@AM Align printing to middle
@@ Prints @ character

